Definitions | es-p-local-pred(es;P), e (e1,e2].P(e), e [e1,e2].P(e), e [e1,e2].P(e), e [e1,e2).P(e), e [e1,e2).P(e), e e'.P(e), e<e'. P(e), e e'.P(e), e<e'.P(e), e c e', e loc e' , l_disjoint(T;l1;l2), Outcome, q-rel(r;x), r < s, ( x L.P(x)), x L. P(x), x f y, A c B, a < b, a <p b, a b, a ~ b, b | a, {i..j }, x:A. B(x), A B, a < b, P   Q, (x l), (e < e'), False, Void, (e <loc e'), t.1, P Q, Dec(P), let x,y = A in B(x;y), E, ES, Top, P & Q,  x. t(x), first(e), pred(e), A, <a, b>,  x,y. t(x;y), pred!(e;e'), , SWellFounded(R(x;y)), constant_function(f;A;B), b, , e < e', r s, val-axiom(E;V;M;info;pred?;init;Trans;Choose;Send;val;time), , type List, Msg(M), kind(e), loc(e), Knd, kindcase(k; a.f(a); l,t.g(l;t) ), EOrderAxioms(E; pred?; info), x:A B(x), IdLnk, left + right, Unit, EqDecider(T), Type, P  Q, strong-subtype(A;B), , Id, f(a), a:A fp B(a), EState(T), x:A. B(x), x:A B(x), t T, s = t, x.A(x), {x:A| B(x)} , e@i. P(e), locl(a), P  Q, a = b, x:A.B(x), loc(e) |